Welkom op de website van Koen De Naeghel.
Inhoud van deze webpagina:
Abstract: In this paper we classify graded reflexive ideals, up to isomorphism and shift, in certain three dimensional Artin-Schelter regular algebras. This classification is similar to the classification of right ideals in the first Weyl algebra, a problem that was completely settled recently. The situation we consider is substantially more complicated however.
Abstract: We determine the possible Hilbert functions of graded rank one torsion free modules over three dimensional Artin-Schelter regular algebras. It turns out that, as in the commutative case, they are related to Castelnuovo functions. From this we obtain an intrinsic proof that the space of torsion free rank one modules on a non-commutative projective plane is connected. A different proof of this fact, based on deformation theoretic methods and the known commutative case has recently been given by Nevins and Stafford. For the Weyl algebra it was proved by Wilson.
Abstract: The Hilbert scheme of n points in the projective plane has a natural stratification obtained from the associated Hilbert series. In general, the precise inclusion relation between the closures of the strata is still unknown. Guerimand studied this problem for strata whose Hilbert series are as close as possible. Preimposing a certain technical condition he obtained necessary and sufficient conditions for the incidence of such strata. In this paper we present a new approach, based on deformation theory, to Guerimand's result. This allows us to show that the technical condition is not necessary.
Abstract: We classify reflexive graded right ideals, up to isomorphism and shift, of generic cubic three dimensional Artin-Schelter regular algebras. We also determine the possible Hilbert functions of these ideals. These results are obtained by using similar methods as for quadratic Artin-Schelter algebras. In particular our results apply to the enveloping algebra of the Heisenberg-Lie algebra from which we deduce a classification of right ideals of an invariant ring of the first Weyl algebra.
Abstract: We characterize the Hilbert functions and minimal resolutions of (critical) Cohen-Macaulay graded right modules of Gelfand-Kirillov dimension two over generic quadratic and cubic three dimensional Artin-Schelter regular algebras.
Abstract: For any partition of a positive integer we consider the chess (or draughts) colouring of its associated Ferrers graph. Let b denote the total number of black unit squares, and w the number of white squares. In this note we characterise all pairs (b,w) which arise in this way. This simple combinatorical result was discovered by characterising Hilbert series of certain right modules over cubic three dimensional Artin-Schelter algebras. However in this note we present a purely combinatorical proof.
The result is (at least partially) known, see Sydney University Mathematical Society Problems Competition 2004, problem 10. However we found it interesting to present an alternative proof. All additional references and remarks will be mostly appreciated.